
Portable Multithreading
The Signal Stack Trick For User-Space Thread Creation

Ralf S. Engelschall
Technische Universität München (TUM)

rse@engelschall.com, http://www.engelschall.com

Abstract

This paper describes a pragmatic but portable fallback approach for creating and dispatching between the machine
contexts of multiple threads of execution on Unix systems that lack a dedicated user-space context switching facility.
Such a fallback approach for implementing machine contexts is a vital part of a user-space multithreading environ-
ment, if it has to achieve maximum portability across a wide range of Unix flavors. The approach is entirely based
on standard Unix system facilities and ANSI-C language features and especially does not require any assembly code
or platform specific tricks at all. The most interesting issue is the technique of creating the machine context for
threads, which this paper explains in detail. The described approach closely follows the algorithm as implemented by
the author for the popular user-space multithreading library GNU Portable Threads (GNU Pth, [25]) which this way
quickly gained the status of one of the most portable user-space multithreading libraries.

Keywords: portability, multithreading, Unix, POSIX, SUSv2, ANSI-C, user-space, context creation, context switch-
ing, signal handler, stack, makecontext, switchcontext, sigaltstack, setjmp, longjmp.

Publishing: Early drafts of this paper were distributed with the GNU Pth distribution. The final release version was
published on the USENIX Annual Technical Conference, June 18-23, 2000, San Diego, California, USA.

1 Introduction

1.1 Multithreading

The paradigm of programming with multiple threads of
execution (aka multithreading) is already a very old one
and dates back to the decades of programming with co-
routines [2, 3]. Paradoxically, the use of threads on Unix
platforms did not become popular until the early 1990s.

Multithreading Advantages
Multithreading can provide many benefits for applica-
tions (good runtime concurrency, parallel programming
techniques can be implemented more easily, the popu-
lar procedural programming style can be combined with
multiple threads of execution, etc.) but the most interest-
ing ones are usually performance gains and reduced re-
source consumption. Because in contrast to multiprocess
applications, multithreaded ones usually require less sys-
tem resources (mainly memory) and their internal com-
munication part can leverage from the shared address
space.

Multithreading and Applications
Nevertheless there still exist just a few real applications
in the free software world that use multithreading for
their benefit, although their application domains are pre-
destined for multithreading. For instance, the popular
Apache webserver as of version 1.3 still uses a pre-

forking process model for serving HTTP requests, al-
though two experiments with multithreaded Apache vari-
ants in 1996 (with rsthreads [27]) and 1998 (with NSPR
[31]) already showed great performance boosts. The
same applies to many similar applications.

The reason for this restraint mainly is that for a long
time, multithreading facilities under Unix were rare. The
situation became better after some vendors like Sun and
DEC incorporated threading facilities into their Unix fla-
vors and POSIX standardized a threading Application
Programming Interface (API) (aka Pthreads [1]). But an
API and a few vendor implementations are not enough to
fulfill the portability requirements of modern free soft-
ware packages. Here stand-alone and really portable
multithreading environments are needed.

The author collected and evaluated over twenty
(mostly user-space) available multithreading facilities
for Unix systems (see Table 1), but only a few of them are
freely available and showed to be really portable. And
even the mostly portable ones suffered from the fact that
they partly depend on assembly code or platform spe-
cific tricks usually related to the creation and dispatch-
ing of the individual threads. This means that the num-
ber of platforms they support is limited and applications
which are based on these facilities are only portable to
those platforms. This situation is not satisfactory, so ap-

1



plication authors still avoid the use of multithreading if
they want to (or have to) achieve maximum portability
for their application.

A pragmatic and mostly portable fallback technique
for implementing user-space threads can facilitate wider
use of multithreading in free software applications.

Ingredients of a Thread
A Unix process has many ingredients, but the most im-
portant ones are its memory mapping table, the signal
dispatching table, the signal mask, the set of file descrip-
tors and the machine context. The machine context in
turn consists of at least the CPU registers including the
program counter and the stack pointer. In addition, there
can be light-weight processes (LWP) or threads, which
usually share all attributes with the underlying (heavy-
weight) process except for the machine context.

Kernel-Space vs. User-Space
Those LWPs or threads, on a Unix platform classically
can be implemented either in kernel-space or in user-
space. When implemented in kernel-space, one usu-
ally calls them LWPs or kernel threads, otherwise (user-
space) threads. If threads are implemented by the kernel,
the thread context switches are performed by the kernel
without notice by the application, similar to the dispatch-
ing of processes. If threads are implemented in user-
space, the thread context switches are performed usually
by an application library without notice by the kernel.
Additionally, there exist hybrid threading approaches,
where typically a user-space library binds one or more
user-space threads to one or more kernel-space LWPs.

Thread Models
The vendor threading facilities under Sun Solaris, IBM
AIX, DEC Tru64 (formerly DIGITAL UNIX or OSF/1)
and SGI IRIX use a M:N mapping [21, 30], i.e., M user-
space threads are mapped onto N kernel-space LWPs.
On the other hand, LinuxThreads [29] under GNU/Linux
uses a 1:1 mapping and pure user-space implementations
like GNU Pth, FSU pthreads or MIT pthreads, etc. use a
M:1 mapping [25, 22, 23].

From now on we focus on such M:1 user space
threading approaches, where one or more user space
threads are implemented inside a single kernel space pro-
cess. The exercise is to implement this by using standard-
ized Unix system and ANSI-C language facilities only.

1.2 The Exercise

As we have mentioned, a thread shares its state with the
underlying process except for the machine context. So
the major task for a user-space threading system is to cre-
ate and dispatch those machine contexts.

In practice, the second major task it has to do is to en-
sure that no thread by accident blocks the whole process
(and thereby all other threads). Instead when an opera-
tion would block, the threading library should suspend
only the execution of the current thread and in the mean-
time dispatch the remaining threads. But this task is out-
side the scope of this paper (see [11] for details about
this task). We focus only on the aspect of machine con-
text handling.

1.3 The Curse of Portability

Our goal of real portability for a threading system causes
some non-trivial problems which have to be solved. The
most obvious one is that dealing with machine contexts
usually suffers from portability, because it is a highly
CPU dependent task for which not every Unix flavor pro-
vides a standardized API. Although such an API would
be not too hard for vendors to provide, because in prin-
ciple it is just a matter of switching a few CPU registers
(mainly the program counter and the stack pointer).

Assembly Code Considered Harmful
Additionally, we disallow the use of any assembly solu-
tions or platform specific tricks, because then the thread-
ing system again would be only semi-portable, i.e., it can
be ported to N platforms but on the (N+1)th platform one
has to manually adjust or even extend it to work there,
too.

This is usually not acceptable, even if it also makes
solving the problems harder. At least most of the known
free software user-space threading systems [22, 23, 24]
do not restrict themself to this and therefore are just semi-
portable. But real portability should be a major goal.

2 Problem Analysis

2.1 The Task in Detail

Our task is simple in principle: provide an API and cor-
responding implementation for creating and dispatching
machine contexts on which user-space threads can be im-
plemented.

The Proposed API
In detail we propose the following Application Program-
mers Interface (API) for the machine context handling:

A data structure of type mctx t which holds the
machine context.

A function “void mctx create(mctx t
*mctx, void (*sf addr)(void *), void *sf arg,
void *sk addr, size t sk size)” which creates and
initializes a machine context structure in mctx with
a start function sf addr, a start function argument

2



Package Gen
es

is

Lat
es

t Ver
sio

n

Im
plem

en
ta

tio
n Spac

e

Thre
ad

M
ap

pin
g

Acti
ve

Dev
elo

pm
en

t

Exp
er

im
en

ta
l S

ta
te

Open
Sou

rc
e

Pth
re

ad
API

Pth
re

ad
Shar

ed
M

em
or

y

Nat
ive

API

Nat
ive

API
� Pth

re
ad

API

Nat
ive

API is
Pth

re
ad

API

Pre
em

ptiv
e Sch

ed
ulin

g

Por
ta

bili
ty

Asse
m

bly
Cod

e

Sys
Call

W
ra

p.

gnu-pth 1999 1.3.5 user n:1 yes no yes yes no yes yes no no full/mcsc+sjlj no partly
cmu-lwp 1984 1.4 user n:1 yes no yes no - yes yes partly no semi/fixed:8 yes no
fsu-pthread 1992 3.13 user n:1 no no yes yes no no - - yes semi/fixed:6 yes yes
mit-pthread 1993 1.8.9 user n:1 no no yes yes no no - - yes semi/fixed:17 yes yes
ptl 1997 990622 user n:1 no no yes yes no no - - yes semi/fixed:10 yes yes
linuxthreads 1997 2.1.2 user+kernel 1:1 yes no yes yes no no - - yes semi/fixed:5 yes yes
uthread 1998 3.4 user n:1 yes no yes yes no no - - yes semi/fixed:2 yes yes
cthread 1991 991115 user n:1 no no yes no - yes yes no no semi/fixed:8 yes yes
openthreads/qt 1996 2.0 user n:1 no no yes no - yes no no no semi/fixed:9 yes no
rt++/qt 1996 1.0 user n:1 no no yes no - yes yes no no semi/fixed:9 yes no
rsthreads 1996 980331 user n:1 no yes yes no - yes no no no semi/fixed:9 yes no
pcthread 1996 1.0 user n:1 no yes yes yes no no - - yes semi/fixed:1 yes no
bbthreads 1996 0.3 kernel 1:1 no yes yes no - yes no - yes semi/fixed:1 yes no
jkthreads 1998 1.2 kernel 1:1 no yes yes no - yes no - yes semi/fixed:1 yes no
nthreads 1997 970604 user n:1 no yes yes no - yes no - no semi/fixed:9 yes partly
rexthreads 1993 930614 user n:1 no yes yes no - yes no - no semi/fixed:4 yes no
coro 1999 1.0.3 user n:1 no yes yes no - yes no - no semi/fixed:1 yes no
greenthreads 1995 1.2 user n:1 no no no no - yes yes - yes full/mcsc no no
solaris-pthread NN 2.7 user+kernel n:m yes no no yes yes yes yes no yes NN NN yes
tru64-pthread NN 5.0 user+kernel n:m yes no no yes yes no no no yes NN NN yes
aix-pthread NN 4.3 user+kernel 1:1 yes no no yes yes no no no yes NN NN yes

Table 1: Summary of evaluated multithreading packages and some of their determined characteristics. Notice that mostly all packages contain
assembly code and are just semi-portable, i.e., they support only a fixed set of platforms and do not automatically adjust for new ones.

sf arg, and a stack starting at sk addr, which is
sk size bytes in size.

A function “void mctx save(mctx t *mctx)”
which saves the current machine context into the
machine context structure mctx.

A function “void mctx restore(mctx t
*mctx)” which restores the new machine con-
text from the machine context structure mctx. This
function does not return to the caller. Instead it
does return at the location stored in mctx (which is
either sf addr from a previous mctx create call
or the location of a previous mctx save call).

A function “void mctx switch(mctx t
*mctx old, mctx t *mctx new)” which switches
from the current machine context (saved to
mctx old for later use) to a new context (restored
from mctx new). This function returns only to the
caller if mctx restore or mctx switch is
again used on mctx old.

2.2 Technical Possibilities

Poking around in the references of the ANSI-C language
reference and the Unix standards show the following
functions on which an implementation can be based:

There is the ucontext(3) facility with the
functions getcontext(3), makecontext(3),
swapcontext(3) and setcontext(3) which
conform to the Single Unix Specification, Version
2 (SUSv2 [20], aka Unix95/98). Unfortunately
these are available on modern Unix platforms only.

There are the jmp buf based functions
setjmp(3) and longjmp(3) which conform to
ISO 9899:1990 (ISO-C) and the sigjmp buf
based sigsetjmp(3) and siglongjmp(3)
functions which conform to IEEE Std1003.1-1988
(POSIX), and Single Unix Specification, Version 2
(SUSv2 [20], aka Unix95/98). The first two func-
tions are available really on all Unix platforms, the
last two are available only on some of them.

On some platforms setjmp(3) and longjmp(3)
save and restore also the signal mask (if one
does not want this semantics, one has to call
setjmp(3) and longjmp(3) there) while on

others one has to explicitly use the superset func-
tions sigsetjmp(3) and siglongjmp(3) for
this. In our discussion we can assume that
setjmp(3) and longjmp(3) save and restore
the signal mask, because if this is not the case

3



in practice, one easily can replace them with
sigsetjmp(3) and siglongjmp(3) calls (if
available) or (if not available) emulate the miss-
ing functionality manually with additional sig-
procmask(2) calls (see pth mctx.c in GNU
Pth [25]).

There is the function sigaltstack(2) which
conforms to the Single Unix Specification, Ver-
sion 2 (SUSv2 [20], aka Unix95/98) and its an-
cestor function sigstack(2) from 4.2BSD. The
last one exists only on BSD-derived platforms, but
the first function already exists on all current Unix
platforms.

2.3 Maximum Portability Solution

The maximum portable solution obviously is to use
the standardized makecontext(3) function to cre-
ate threads and switchcontext(3) or getcon-
text(3)/setcontext(3) to dispatch them. And actu-
ally these are the preferred functions modern user-space
multithreading systems are using. We could easily im-
plement our proposed API as following (all error checks
omitted for better readability):

/* machine context data structure */
typedef struct mctx_st �

ucontext_t uc;�
mctx_t;

/* save machine context */
#define mctx_save(mctx) �

(void)getcontext(&(mctx)->uc)

/* restore machine context */
#define mctx_restore(mctx) �

(void)setcontext(&(mctx)->uc)

/* switch machine context */
#define mctx_switch(mctx_old,mctx_new) �

(void)swapcontext(&((mctx_old)->uc), �
&((mctx_new)->uc))

/* create machine context */
void mctx_create(

mctx_t *mctx,
void (*sf_addr)(void *), void *sf_arg,
void *sk_addr, size_t sk_size)

�
/* fetch current context */
getcontext(&(mctx->uc));

/* adjust to new context */
mctx->uc.uc_link = NULL;
mctx->uc.uc_stack.ss_sp = sk_addr;
mctx->uc.uc_stack.ss_size = sk_size;
mctx->uc.uc_stack.ss_flags = 0;

/* make new context */
makecontext(&(mctx->uc),

sf_addr, 1, sf_arg);
return;�

Unfortunately there are still lots of Unix platforms where
this approach cannot be used, because the standard-
ized ucontext(3) API is not provided by the ven-
dor. Actually the platform test results for GNU Pth
(see Table 2 below) showed that only 7 of 21 success-
fully tested Unix flavors provided the standardized API
(makecontext(3), etc.). On all other platforms, GNU
Pth was forced to use the fallback approach of imple-
menting the machine context as we will describe in the
following. Obviously this fallback approach has to use
the remaining technical possibilities (sigsetjmp(3),
etc.).

Operating System Architecture(s) mcsc sjlj
FreeBSD 2.x/3.x Intel no yes
FreeBSD 3.x Intel, Alpha no yes
NetBSD 1.3/1.4 Intel, PPC, M68K no yes
OpenBSD 2.5/2.6 Intel, SPARC no yes
BSDI 4.0 Intel no yes
Linux 2.0.x glibc 1.x/2.0 Intel, SPARC, PPC no yes
Linux 2.2.x glibc 2.0/2.1 Intel, Alpha, ARM no yes
Sun SunOS 4.1.x SPARC no yes
Sun Solaris 2.5/2.6/2.7 SPARC yes yes
SCO UnixWare 2.x/7.x Intel yes yes
SCO OpenServer 5.0.x Intel no yes
IBM AIX 4.1/4.2/4.3 RS6000, PPC yes yes
HP HPUX 9.10/10.20 HPPA no yes
HP HPUX 11.0 HPPA yes yes
SGI IRIX 5.3 MIPS 32/64 no yes
SGI IRIX 6.2/6.5 MIPS 32/64 yes yes
ISC 4.0 Intel no yes
Apple MacOS X PPC no yes
DEC OSF1/Tru64 4.0/5.0 Alpha yes yes
SNI ReliantUNIX MIPS yes yes
AmigaOS M68K no yes

Table 2: Summary of operating system support. The level and type
of support found on each tested operating system. mcsc:
functional makecontext(3)/switchcontext(3),
sjlj: functional setjmp(3)/longjmp(3) or sig-
setjmp(3)/siglongjmp(3). See file PORTING in GNU
Pth [25] for more details.

2.4 Remaining Possibilities

Our problem can be divided into two parts, an easy one
and a difficult one.

The Easy Part
That setjmp(3) and longjmp(3) can be used to im-
plement user-space threads is commonly known [24, 27,
28]. Mostly all older portable user-space threading li-
braries are based on them, although some problems are
known with these facilities (see below). So it becomes
clear that we also have to use these functions and base
our machine context (mctx t) on their jmp buf data
structure.

We immediately recognize that this way we have
at least solved the dispatching problem, because our
mctx save, mctx restore and mctx switch

4



functions can be easily implemented with setjmp(3)
and longjmp(3).

The Difficult Part
Nevertheless, the difficult problem of how to create the
machine context remains. Even knowing that our ma-
chine context is jmp buf based is no advantage to us. A
jmp buf has to be treated by us as an opaque data struc-
ture — for portability reasons. The only operations we
can perform on it are setjmp(3) and longjmp(3) calls,
of course. Additionally, we are forced to use sigalt-
stack(3) for our stack manipulations, because it is the
only portable function which actually deals with stacks.

So it is clear that our implementation for mctx -
create has to play a few tricks to use a jmp buf
for passing execution control to an arbitrary startup
routine. And our approach has to be careful to en-
sure that it does not suffer from unexpected side-
effects. It should be also obvious that we can-
not again expect to find an easy solution (as for
mctx save, mctx restore and mctx switch),
because setjmp(3) and sigaltstack(3) cannot be
trivially combined to form mctx create.

3 Implementation

As we have already discussed, our implementation con-
tains an easy part (mctx save, mctx restore and
mctx switch) and a difficult part (mctx create).
Let us start with the easy part, whose implementation is
obvious (all error checks again omitted for better read-
ability):

/* machine context data structure */
typedef struct mctx_st �

jmp_buf jb;�
mctx_t;

/* save machine context */
#define mctx_save(mctx) �

(void)setjmp((mctx)->jb)

/* restore machine context */
#define mctx_restore(mctx) �

longjmp((mctx)->jb, 1)

/* switch machine context */
#define mctx_switch(mctx_old,mctx_new) �

if (setjmp((mctx_old)->jb) == 0) �
longjmp((mctx_new)->jb, 1)

/* create machine context */
void mctx_create(

mctx_t *mctx,
void (*sf_addr)(void *), void *sf_arg,
void *sk_addr, size_t sk_size)

�
...initialization of mctx to be filled in...�

There is one subtle but important point we should men-
tion: The use of the C pre-processor #define direc-
tive to implement mctx save, mctx restore and
mctx switch is intentional. For technical reasons
related to setjmp(3) semantics and return related
stack behavior (which we will explain later in detail)
we cannot implement these three functions (at least not
mctx switch) as C functions if we want to achieve
maximum portability across all platforms. Instead they
have to be implemented as pre-processor macros.

3.1 Algorithm Overview

The general idea for mctx create is to configure the
given stack as a signal stack via sigaltstack(2), send
the current process a signal to transfer execution con-
trol onto this stack, save the machine context there via
setjmp(3), get rid of the signal handler scope and boot-
strap into the startup routine.

The real problem in this approach comes from the
signal handler scope which implies various restrictions
on Unix platforms (the signal handler scope often is just
a flag in the process control block (PCB) which various
system calls, like sigaltstack(2), check before al-
lowing the operation – but because it is part of the pro-
cess state the kernel manages, the process cannot change
it itself). As we will see, we have to perform a few tricks
to get rid of it. The second main problem is: how do we
prepare the calling of the start routine without immedi-
ately entering it?

3.2 Algorithm

The input to the mctx create function is the machine
context structure mctx which should be initialized, the
thread startup function address sf addr, the thread startup
function argument sf arg and a chunk of memory start-
ing at sk addr and sk size bytes in size, which should
become the threads stack.

The following algorithm for mctx create is di-
rectly modeled after the implemented algorithm one can
find in GNU Pth [25], which in turn was derived from
techniques originally found in rsthreads [27]:

1. Preserve the current signal mask and block an ar-
bitrary worker signal (we use SIGUSR1, but any
signal can be used for this – even an already used
one). This worker signal is later temporarily re-
quired for the trampoline step.

2. Preserve a possibly existing signal action for the
worker signal and configure a trampoline function
as the new temporary signal action. The signal de-
livery is configured to occur on an alternate signal
stack (see next step).

5



3. Preserve a possibly active alternate signal stack
and configure the memory chunk starting at
sk addr as the new temporary alternate signal
stack of length sk size.

4. Save parameters for the trampoline step (mctx,
sf addr, sf arg, etc.) in global variables, send the
current process the worker signal, temporarily un-
block it and this way allow it to be delivered on the
signal stack in order to transfer execution control
to the trampoline function.

5. After the trampoline function asynchronously en-
tered, save its machine context in the mctx struc-
ture and immediately return from it to terminate
the signal handler scope.

6. Restore the preserved alternate signal stack, pre-
served signal action and preserved signal mask for
worker signal. This way an existing application
configuration for the worker signal is restored.

7. Save the current machine context of
mctx create. This allows us to return to this
point after the next trampoline step.

8. Restore the previously saved machine context of
the trampoline function (mctx) to again transfer ex-
ecution control onto the alternate stack, but this
time without(!) signal handler scope.

9. After reaching the trampoline function (mctx)
again, immediately bootstrap into a clean stack
frame by just calling a second function.

10. Set the new signal mask to be the same as
the original signal mask which was active when
mctx create was called. This is required be-
cause in the first trampoline step we usually had at
least the worker signal blocked.

11. Load the passed startup information (sf addr,
sf arg) from mctx create into local (stack-
based) variables. This is important because their
values have to be preserved in machine context de-
pendent memory until the created machine context
is the first time restored by the application.

12. Save the current machine context for later restor-
ing by the calling application.

13. Restore the previously saved machine context of
mctx create to transfer execution control back
to it.

14. Return to the calling application.

When the calling application now again switches into the
established machine context mctx, the thread starts run-
ning at routine sf addr with argument sf arg. Figure 1
illustrates the algorithm (the numbers refer to the algo-
rithm steps listed above).

12

sk_addrmain stack

main sf_addr(sf_arg)

mctx_create

mctx_createmctx_create

_boot

_trampoline

sk
_s

iz
e

mctx_switch

mctx_switch
mctx_switch

mctx_switch

mctx_create

1 2

6

7 8

43

5

9

13
10

14

11

Figure 1: Illustration of the machine context creation procedure. The
thick solid lines and numeric marks correspond to the al-
gorithm steps as described in section 3.2. The thick dotted
lines show a possible further processing where a few con-
text switches are performed to dispatch between the main
thread and the new created thread.

6



3.3 Source Code

The corresponding ANSI-C code, which implements
mctx create, is a little bit more complicated. But
with the presented algorithm in mind, it is now straight-
forward.

static mctx_t mctx_caller;
static sig_atomic_t mctx_called;

static mctx_t *mctx_creat;
static void (*mctx_creat_func)(void *);
static void *mctx_creat_arg;
static sigset_t mctx_creat_sigs;

void mctx_create(
mctx_t *mctx,
void (*sf_addr)(void *), void *sf_arg,
void *sk_addr, size_t sk_size)

�
struct sigaction sa;
struct sigaction osa;
struct sigaltstack ss;
struct sigaltstack oss;
sigset_t osigs;
sigset_t sigs;

/* Step 1: */
sigemptyset(&sigs);
sigaddset(&sigs, SIGUSR1);
sigprocmask(SIG_BLOCK, &sigs, &osigs);

/* Step 2: */
memset((void *)&sa, 0,

sizeof(struct sigaction));
sa.sa_handler = mctx_create_trampoline;
sa.sa_flags = SA_ONSTACK;
sigemptyset(&sa.sa_mask);
sigaction(SIGUSR1, &sa, &osa);

/* Step 3: */
ss.ss_sp = sk_addr;
ss.ss_size = sk_size;
ss.ss_flags = 0;
sigaltstack(&ss, &oss);

/* Step 4: */
mctx_creat = mctx;
mctx_creat_func = sf_addr;
mctx_creat_arg = sf_arg;
mctx_creat_sigs = osigs;
mctx_called = FALSE;
kill(getpid(), SIGUSR1);
sigfillset(&sigs);
sigdelset(&sigs, SIGUSR1);
while (!mctx_called)

sigsuspend(&sigs);

/* Step 6: */
sigaltstack(NULL, &ss);
ss.ss_flags = SS_DISABLE;
sigaltstack(&ss, NULL);
if (!(oss.ss_flags & SS_DISABLE))

sigaltstack(&oss, NULL);
sigaction(SIGUSR1, &osa, NULL);
sigprocmask(SIG_SETMASK,

&osigs, NULL);

/* Step 7 & Step 8: */
mctx_switch(&mctx_caller, mctx);

/* Step 14: */
return;�

void mctx_create_trampoline(int sig)
�

/* Step 5: */
if (mctx_save(mctx_creat) == 0) �

mctx_called = TRUE;
return;�

/* Step 9: */
mctx_create_boot();�

void mctx_create_boot(void)
�

void (*mctx_start_func)(void *);
void *mctx_start_arg;

/* Step 10: */
sigprocmask(SIG_SETMASK,

&mctx_creat_sigs, NULL);

/* Step 11: */
mctx_start_func = mctx_creat_func;
mctx_start_arg = mctx_creat_arg;

/* Step 12 & Step 13: */
mctx_switch(mctx_creat, &mctx_caller);

/* The thread ‘‘magically’’ starts... */
mctx_start_func(mctx_start_arg);

/* NOTREACHED */
abort();�

3.4 Run-time Penalty

After this discussion of the implementation details, an
obviously occuring question now is what the expected
run-time penalty is. That is, what does our presented
machine context implementation cost compared to a
ucontext(3) based solution. From the already dis-
cussed details we can easily guess that our complex ma-
chine context creation procedure (mctx create) will
be certainly noticeably slower than a solution based on a
ucontext(3) facility.

But a wild guess is not sufficing for a reason-
able statement. So we have written a Simple Ma-
chine Context Benchmark (SMCB [32]) which was used
to compare run-time costs of the mctx create and
mctx switch functions if once implemented through
the POSIX makecontext(3)/swapcontext(3) func-
tions (as shown in section 2.3), and once imple-
mented with our based fallback implementation (for
convenience reasons we directly used sigjmp buf,
sigsetjmp(3) and siglongjmp(3) in the bench-
mark, because all tested platforms provided this). The
results are shown Table 3 below.

As one can derive from these evaluations, our sig-

7



nal stack trick to implement mctx create in practice
is approximately 15 times slower than the makecon-
text(3) based variant. This cost should not be ne-
glected. On the other hand, the sigsetjmp(3)/ sig-
longjmp(3) based mctx switch performs about as
good as the swapcontext(3) based variant (the reason
why on most of the tested platforms it is even slightly
faster is not known – but we guess it is related to a
greater management overhead in the ucontext(3) fa-
cility, which is a superset of the functionality we require).
Or in short: our presented fallback approach costs notice-
able extra CPU cycles on thread creation time, but is as
fast as the standardized solution under thread dispatching
time.

10000 � mctx create (in seconds):

Platform mcsc sjlj overhead
Sun Solaris 2.6 (SPARC) 0.076 1.268 16.7
DEC Tru64 5.0 (Alpha) 0.019 0.235 12.4
SGI IRIX 6.5 (MIPS) 0.105 1.523 14.5
SCO UnixWare 7.0 (Intel) 0.204 3.827 18.8
HP HP/UX 11.0 (HPPA) 0.057 0.667 11.8

Average: 14.8

10000 � mctx switch (in seconds):

Platform mcsc sjlj overhead
Sun Solaris 2.6 (SPARC) 0.137 0.210 1.5
DEC Tru64 5.0 (Alpha) 0.034 0.022 0.6
SGI IRIX 6.5 (MIPS) 0.235 0.190 0.8
SCO UnixWare 7.0 (Intel) 0.440 0.398 0.9
HP HP/UX 11.0 (HPPA) 0.106 0.065 0.6

Average: 0.9

Table 3: Summary of Simple Machine Context Benchmark (SMCB,
[32]). The speed of machine context creation and switching
found on each tested operating system. mcsc: functional
makecontext(3) / switchcontext(3), sjlj: functional
sigsetjmp(3)/siglongjmp(3). overhead: the over-
head of using sjlj instead of mcsc.

3.5 Remaining Issues

The presented algorithm and source code can be directly
used in practice for implementing a minimal threading
system or the concept of co-routines. Its big advantage
is that if the operating system provides the required stan-
dardized primitives, we do not need to know anything at
all about the machine we are running on — everything
just works. Nevertheless, there remain a few special is-
sues we still have to discuss.

The Waggly longjmp(3) after Return
On some platforms, longjmp(3) may not be called af-
ter the function which called the setjmp(3) returned.
When this is done, the stack frame situation is not guar-
anteed to be in a clean and consistent state. But this is
exactly the mechanism we use in order to get rid of the
signal handler scope in step 5.

The only alternative would be to leave the signal han-
dler via longjmp(3), but then we would have another

problem, as experience showed. For instance, ROBERT

S. THAU’s Really Simple Threads (rsthreads) [27] was
ported to several platforms and was used to run an exper-
imental multithreaded version of the Apache webserver.
THAU’s approach was similar to ours, but differed signif-
icantly in the way the signal handler is left. In particular,
in an attempt to avoid the unsafe stack frame, it used a
longjmp(3) call to leave the signal handler, rather than
returning from it. But this approach does not work on
some SysV-derived kernels, as we already mentioned.

The problem is that these kernels do not “believe”
that the code is out of the signal-handling context, un-
til the signal handler has returned — and accordingly,
refuse to allow readjustment of the signal stack until it
has. But with the rsthreads approach, the signal han-
dler that created the first thread never returns, and when
rsthreads wants to create the second thread, these kernels
refuse to readjust the signal stack, and we are stuck. So
with portability in mind, we decided that it is better to get
rid of the signal handler scope with the straight-forward
“return” and instead fight the mentioned (simpler)
problem of an unsafe stack frame.

Fortunately, in practice this is not as problematic as
it seems, because evaluations (for GNU Pth) on a wide
range of current Unix platforms showed that one can
reach a safe stack frame again by just calling a function.
That is the reason why our algorithm enters the second
trampoline function in step 9.

The Uncooperative longjmp(3)
Even on operating systems which have working POSIX
functions, our approach may theoretically still not work,
because longjmp(3) does not cooperate. For in-
stance, on some platforms the standard libc longjmp(3)
branches to error-handling code if it detects that the caller
tries to jump up the stack, i.e., into a stack frame that has
already returned.

This is usually implemented by comparing the cur-
rent stack pointer to the one in the jmp buf structure.
That is why it is important for our algorithm to return
from the signal handler and this way enter the (different)
stack of the parent thread. In practice, the implemen-
tation in GNU Pth showed that then one no longer suf-
fers from those uncooperativelongjmp(3) implementa-
tions, but one should keep this point in mind when reach-
ing even more uncooperative variants on esoteric Unix
platforms. If it still occurs, one can only try to resume the
operation by using a possibly existing platform-specific
error handling hook.

Garbage at Bottom of Stacks
There is a subtle side-effect of our implementation: there
remains some garbage at the bottom of each thread stack.
The reason is that if a signal is delivered, the operat-
ing system pushes some state onto the stack, which is

8



restored later, when the signal handler returns. But al-
though we return from the signal handler, we jump in
again, and this time we enter not directly at the bottom
of the stack, because of the setjmp(3) in the trampoline
function.

Since the operating system has to capture all CPU
registers (including those that are ordinarily scratch reg-
isters or caller-save registers), there can be a fair amount
of memory at the bottom of the established thread stack.
For some systems this can be even up to 1 KB of garbage
[27]. But except for the additional memory consumption
it does not hurt.

We just have to keep in mind this additional stack
consumption when deciding the stack size (sk size). A
reasonable stack size usually is between 16 and 32 KB.
Less is neither reasonable nor always allowed (current
Unix platforms usually require a stack to be at least 16
KB in size).

Stack Overflows
There is a noticeable difference between the initial
main() thread and the explicitly spawned threads: the
initial thread runs on the standard process stack. This
stack automatically can grow under Unix, while the
stacks of the spawned threads are fixed in size. So stack
overflows can occur for the spawned threads. This im-
plies that the parent has to make a reasonable guess of
the threads stack space requirement already at spawning
time.

And there is no really portable solution to this prob-
lem, because even if the thread library’s scheduler can
detect the stack overflow, it cannot easily resize the stack.
The reason is simply that the stack initialization goes
hand in hand with the initialization of the start routine,
as we discussed before. And this start routine has to be
a real C function in order to call. But once the thread is
running, there no longer exists such an entry point. So,
even if the scheduler would be able to give the thread
a new enlarged stack, there is no chance to restart the
thread on this new stack.

Or more correct, there is no portable way to achieve
it. As with the previous problems, there is a non-portable
solution. That is why our implementation did not deal
with this issue. Instead in practice one usually lets the
scheduler just detect the stack overflow and terminate the
thread. This is done by using a red zone at the top of the
stack which is marked with a magic value the scheduler
checks between thread dispatching operations.

Resizing solutions are only possible in semi-portable
ways. One approach is to place the thread stacks into a
memory mapped area (see mmap(2)) of the process ad-
dress space and let the scheduler catch SIGSEGV sig-
nals. When such a signal occurs, because of a stack
overflow in this area, the scheduler explicitly resizes

the memory mapped area. This resizing can be done
either by copying the stack contents into a new larger
area which is then re-mapped to the old address or via
an even more elegant way, as the vendor threading li-
braries of Sun Solaris, FreeBSD and DEC Tru64 do it:
the thread stacks are allocated inside memory mapped
areas which are already initially a few MB in (virtual)
size and then one just relies on the virtual memory sys-
tem’s feature that only the actually consumed memory
space is mapped.

Startup Routine Termination
There is a cruel abort(3) call at the end of our
mctx create boot function. This means, if the
startup routine would return, the process is aborted. That
is obviously not reasonable, so why have we written it
this way?

If the thread returns from the startup routine, it should
be cleanly terminated. But it cannot terminate itself (for
instance, because it cannot free its own stack while run-
ning on it, etc.). So the termination handling actually
is the task of the thread library scheduler. As a conse-
quence, the thread spawning function of a thread library
should be not directly mctx create.

Instead the thread spawning function should use an
additional trampoline function as the higher-level startup
routine. And this trampoline function performs a context
switch back into the thread library scheduler before the
lower-level startup routine would return. The scheduler
then can safely remove the thread and its machine con-
text. That is why the abort(3) call is never reached in
practice (more details can be found in the implementa-
tions of pth spawn and pth exit in pth lib.c of
GNU Pth [25])

The sigstack(2) Fallback Situation
Not all platforms provide the standardized sigalt-
stack(2). Instead they at least provide the 4.2BSD an-
cestor function sigstack(2). But one cannot trivially
replace sigaltstack(2) by sigstack(2) in this sit-
uation, because in contrast to sigaltstack(2), the old
sigstack(2) does not automatically handle the ma-
chine dependent direction of stack growth.

Instead, the caller has to know the direction and
always call sigstack(2) with the address of the
bottom of the stack. So, in a real-world imple-
mentation one first has to determine the direction of
stack growth in order to use sigstack(2) as a re-
placement for sigaltstack(2). Fortunately this
is easier than it seems on the first look (for de-
tails see the macros AC CHECK STACKGROWTH and
AC CHECK STACKSETUP in file aclocal.m4 from
GNU Pth [25]). Alternatively if one can afford to waste
memory, one can use an elegant trick: to set up a stack of

9



size
�

, one allocates a chunk of memory (starting at ad-
dress � ) of size

�����
and then calls sigstack(2) with

the parameters sk addr= ��� � and sk size=
�

, i.e., one
specifies the middle of the memory chunk as the stack
base.

The Blind Alley of Brain-Dead Platforms
The world would not be as funny as it is, if really all
Unix platforms would be fair to us. Instead, currently
at least one platform exists which plays unfair: unfortu-
nately, ancient versions of the popular GNU/Linux. Al-
though we will discover that it both provides sigalt-
stack(2) and sigstack(2), our approach won’t work
on Linux kernels prior to version 2.2 and glibc prior to
version 2.1.

Why? Because its libc provides only stubs of these
functions which always return just -1 with errno set
to ENOSYS. So, this definitely means that our nifty al-
gorithm is useless there, because its central point is
sigaltstack(2)/sigstack(2). Nevertheless we do
not need to give up. At least not, if we, for a single brain-
dead platform, accept to break our general goal of not
using any platform dependent code.

So, what can we actually do here? All we have to do,
is to fiddle around a little bit with the machine-dependent
jmp buf ingredients (by poking around in setjmp.h
or by disassembling longjmp(3) in the debugger). Usu-
ally one just has to do a setjmp(3) to get an initial state
in the jmp buf structure and then manually adjust two
of its fields: the program counter (usually a structure
member with “pc” in the name) and the stack pointer
(usually a structure member with “sp” in the name).

That is all and can be acceptable for a real-world im-
plementation which really wants to cover mostly all plat-
forms – at least as long as the special treatment is needed
just for one or two platforms. But one has to keep in
mind that it at least breaks one of the initial goals and
has to be treated as a last chance solution.

Functions sigsetjmp(3) and siglongjmp(3)
One certainly wants the POSIX thread semantics

where a thread has its own signal mask. As al-
ready mentioned, on some platforms setjmp(3) and
longjmp(3) do not provide this and instead one has
to explicitly call sigsetjmp(3) and siglongjmp(3)
instead. There is only one snare: on some plat-
forms sigsetjmp(3)/siglongjmp(3) save also in-
formation about the alternate signals stack. So here
one has to make sure that although the thread dis-
patching later uses sigsetjmp(3)/siglongjmp(3),
the thread creation step in mctx create still uses
plain setjmp(3)/longjmp(3) calls for the trampo-
line trick. One just has to be careful because the
jmp buf and sigjmp buf structures cannot be mixed

between calls to the sigsetjmp(3)/siglongjmp(3)
and setjmp(3)/longjmp(3).

More Machine Context Ingredients
Finally, for a real-world threading implementation one
usually wants to put more state into the machine con-
text structure mctx t. For instance to fulfill more
POSIX threading semantics, it is reasonable to also save
and restore the global errno variable. All this can
be easily achieved by extending the mctx t structure
with additional fields and by making the mctx save,
mctx restore and mctx switch functions to be
aware of them.

3.6 Related Work

Beside GNU Pth [25], there are other multithreading
libraries which use variants of the presented approach
for implementing machine contexts in user-space. Most
notably there are ROBERT S. THAU’s Really Simple
Threads (rsthreads, [27]) package which uses sigalt-
stack(2) in a very similar way for thread creation, and
KOTA ABE’s Portable Thread Library (PTL, [24]) which
uses a sigstack(2) approach. But because their ap-
proaches handle the signal handler scope differently, they
are not able to achieve the same amount of portability
and this way do not work for instance on some System-
V-derived platforms.

3.7 Summary & Availability

We have presented a pragmatic and mostly portable fall-
back approach for implementing the machine context for
user-space threads, based entirely on Unix system and
ANSI-C language facilities. The approach was success-
fully tested in practice on a wide range of Unix flavors
by GNU Pth and should also adapt to the remaining Unix
platforms as long as they adhere to the relevant standards.

The GNU Pth package is distributed under the
GNU Library General Public License (LGPL 2.1) and
freely available from http://www.gnu.org/software/pth/
and ftp://ftp.gnu.org/gnu/pth/.

3.8 Acknowledgements

I would like to thank ROBERT S. THAU, DAVID BUTEN-
HOF, MARTIN KRAEMER, ERIC NEWTON and BRUNO

HAIBLE for their comments which helped to write the
initial version of this paper. Additionally, credit has to
be given to CHRISTOPHER SMALL and the USENIX re-
viewers for their invaluable feedback which allowed this
paper to be extended, cleaned up and finally published
at the USENIX Annual Technical Conference 2000. Fi-
nally, thanks go to all users of GNU Pth for their feed-

10



back on the implementation, which helped in fine-tuning
the presented approach. [rse]

References
[1] POSIX 1003.1c Threading, IEEE POSIX 1003.1c-1995,

ISO/IEC 9945-1:1996

[2] M.E. CONWAY: Design of a separable transition-
diagram compiler., Comm. ACM 6:7, 1963, p.396-408

[3] E.W. DIJKSTRA: Co-operating sequential processes, in
F. Genuys (Ed.), Programming Languages, NATO Ad-
vanced Study Institute, Academic Press, London, 1965,
p.42-112.

[4] B. NICHOLS, D. BUTTLAR, J.P. FARREL: Pthreads
Programming - A POSIX Standard for Better Multipro-
cessing, O’Reilly, 1996; ISBN 1-56592-115-1

[5] B. LEWIS, D. J. BERG: Threads Primer - A Guide To
Multithreaded Programming, Prentice Hall, 1996; ISBN
0-13-443698-9

[6] S. J. NORTON, M. D. DIPASQUALE: Thread Time - The
Multithreaded Programming Guide, Prentice Hall, 1997;
ISBN 0-13-190067-6

[7] D. R. BUTENHOF: Programming with POSIX Threads,
Addison Wesley, 1997; ISBN 0-201-63392-2

[8] S. PRASAD: Multithreading Programming Techniques,
McGraw-Hill, 1996; ISBN 0-079-12250-7

[9] S. KLEINMAN, B. SMALDERS, D. SHAH: Program-
ming with Threads, Prentice Hall, 1995; ISBN 0-131-
72389-8

[10] C.J. NORTHRUP: Programming With Unix Threads,
John Wiley & Sons, 1996; ISBN 0-471-13751-0

[11] P. BARTON-DAVIS, D. MCNAMEE, R. VASWANI, E.
LAZOWSKA: Adding Scheduler Activations to Mach 3.0,
University of Washington, 1992; Technical Report 92-
08-03

[12] D. STEIN, D. SHAH: Implementing Lightwight Threads,
SunSoft Inc., 1992 (published at USENIX’92).

[13] W.R.STEVENS: Advanced Programming in the Unix
Environment, Addison-Wesley, 1992; ISBN 0-201-
56317-7

[14] D. LEWINE: POSIX Programmer’s Guide: Writing
Portable Unix Programs, O’Reilly & Associates,Inc.,
1994; ISBN 0-937175-73-0

[15] BRYAN O’SULLIVAN: Frequently asked
questions for comp.os.research, 1995;
http://www.serpentine.com/˜bos/os-faq/,
ftp://rtfm.mit.edu/pub/usenet/comp.os.research/

[16] SUN MICROSYSTEMS, INC: Threads Frequently Asked
Questions, 1995, http://www.sun.com/workshop/-
threads/faq.html

[17] BRYAN O’SULLIVAN: Frequently asked ques-
tions for comp.programming.threads, 1997;
http://www.serpentine.com/˜bos/threads-faq/.

[18] BIL LEWIS: Frequently asked questions for
comp.programming.threads, 1999; http://-
www.lambdacs.com/newsgroup/FAQ.html

[19] NUMERIC QUEST INC: Multithreading - Defini-
tions and Guidelines; 1998; http://www.numeric-
quest.com/lang/multi-frame.html

[20] THE OPEN GROUP: The Single Unix Specification,
Version 2 - Threads; 1997; http://www.opengroup-
.org/onlinepubs/007908799/xsh/threads.html

[21] SUN MICROSYSTEMS INC: SMI Thread Resources;
http://www.sun.com/workshop/threads

[22] FRANK MUELLER: FSU pthreads; 1997; http://www-
.cs.fsu.edu/˜mueller/pthreads/

[23] CHRIS PROVENZANO: MIT pthreads; 1993;
http://www.mit.edu/people/proven/pthreads.html
(old), http://www.humanfactor.com/pthreads/mit-
pthreads.html (updated)

[24] KOTA ABE: Portable Threading Library (PTL); 1999;
http://www.media.osaka-cu.ac.jp/˜k-abe/PTL/

[25] RALF S. ENGELSCHALL: GNU Portable Threads (Pth);
1999; http://www.gnu.org/software/pth/, ftp://ftp.gnu-
.org/gnu/pth/

[26] MICHAEL T. PETERSON: POSIX and DCE Threads
For Linux (PCThreads); 1995; http://members.aa-
.net/˜mtp/PCthreads.html

[27] ROBERT S. THAU: Really Simple Threads (rsthreads);
1996; ftp://ftp.ai.mit.edu/pub/rst/

[28] JOHN BIRRELL: FreeBSD uthreads; 1998;
ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-
current/src/lib/libc r/uthread/

[29] XAVIER LEROY: The LinuxThreads library; 1999;
http://pauillac.inria.fr/˜xleroy/linuxthreads/

[30] IBM: AIX Version 4.3 General Programming Concepts:
Writing and Debugging Programs; Understanding
Threads; 1998; http://www.rs6000.ibm.com/doc link/-
en US/a doc lib/aixprggd/genprogc/understanding-
threads.htm

[31] Netscape Portable Runtime (NSPR); http://-
www.mozilla.org/docs/refList/refNSPR/, http://-
lxr.mozilla.org/seamonkey/source/nsprpub/

[32] RALF S. ENGELSCHALL: Simple Machine Context
Benchmark; 2000; http://www.gnu.org/software/pth-
/smcb.tar.gz

11


