
XFA(3) FiniteAutomata Library XFA(3)

NAME
xfa_alloc_trans, xfa_free_trans, xfa_alloc_state, xfa_free_state, xfa_free_attr, xfa_do_once, xfa_nfa2dfa,
xfa_label_states, xfa_dfa_minimize, xfa_re2nfa

SYNOPSIS
#include <xfa.h>

xfa_trans_t *xfa_alloc_trans(xfa_system_t *sys, unsigned long const *map, unsigned long flags, xfa_state_t * from, xfa_state_t *
void xfa_free_trans(xfa_system_t *sys, xfa_trans_t *trn);
xfa_state_t *xfa_alloc_state(xfa_system_t *sys, int phsize);
void xfa_free_state(xfa_system_t *sys, xfa_state_t *stt, int recurse);
void xfa_free_attr(xfa_system_t *sys, xfa_attr_t *attr);
int xfa_do_once(xfa_system_t *sys, xfa_state_t *stt, int (*dproc) (void *, xfa_system_t *, xfa_state_t *), void *priv);
xfa_state_t *xfa_nfa2dfa(xfa_system_t *sys, xfa_state_t *stt);
int xfa_label_states(xfa_system_t *sys, xfa_state_t *stt, unsigned long *label);
int xfa_dfa_minimize(xfa_system_t *sys, xfa_state_t *stt);
int xfa_re2nfa(xfa_system_t *sys, xfa_state_t **csts, xfa_state_t **cste, unsigned char const **ptr);

DESCRIPTION
TheXFA library is a Finite Automata (FA) library to handle tasks like building (programmatically or from
regular expressions), converting NFA (Non-deterministic FA) to DFA (Deterministic FA) and reducing FA
graphs. The library relies only on the availability of an ANSI C compiler, and in this way can be used in
almost every system (from embedded devices to servers). TheXFA library uses the concepts ofstateand
transactionto define an arbitrarly complex FA graph, wherestatesare connected bytransactions. The
library supply both low lev el graph building capabilities and regular expression driven graph construction.
The complexity of the graphs that are treatable by theXFA library is only limited by the amount of avail-
able memory.

Structures
The following structures are defined:

xfa_system_t

typedef struct s_xfa_system {
void *priv;
void *(*alloc) (void *, int);
void (*free) (void *, void *);
void (*error) (void *, int);

} x fa_system_t;

Thexfa_system_t structure define the system interface for theXFA library. It is caller responsibil-
ity to fill up the members of the structure with the proper functions pointers that matches the host
where theXFA library is running. Thepriv member of thexfa_system_t structure is an opaque
pointer that is passed to all the system functions as first parameter. This can be used by the system
function as "context" for the proper handling and re-entrancy of the system code. The
alloc(priv,size) function is used to allocate memory. The function accepts an integer parameter
that represent the size of the memory block that has to be allocated. Thealloc(priv,size) function
returns a pointer to the newly allocated memory block, orNULL in case of error. The
free(priv,data) function is called to free memory blocks allocated using thealloc(priv,size) func-
tion. It is possible to passNULL to free(priv,data), and in that case no real free should be per-
formed. The functionerror(priv,errno) is used by theXFA library to set an error code for a failing
XFA operation.

GNU 0.18 1

XFA(3) FiniteAutomata Library XFA(3)

xfa_state_t

typedef struct s_xfa_state {
struct ll_list_head tlist;
struct ll_list_head flist;
xfa_ptrhash_t sh;
unsigned long flags;
unsigned long label;
struct ll_list_head alist;

} x fa_state_t;

Thexfa_state_t structure describe a state inside the FA. Thetlist list is astruct ll_list_headstruc-
ture that is used to links all the transactions that leave the current state. Theflist list is a list is a
struct ll_list_headstructure that is used to links all the transactions that arrive to the current state.
Theshfield is axfa_ptrhash_tstructure that is used during the NFA to DFA conversion, to accu-
mulate all the states reachable by EPS transactions. Theflagsfield is a bitfield that lists all the
flags associated with the state. The following flags are defined for theflagsfield:

XFASF_START This is the start of the FA graph

XFASF_TARGET This is the target of the FA graph

Thealist field is astruct ll_list_headthat links all the attributes of the state. Attributes are defined
using thexfa_attr_tstructure.

xfa_trans_t

typedef struct s_xfa_trans {
struct ll_list_head tlink;
struct ll_list_head flink;
unsigned long *map;
unsigned long flags;
struct s_xfa_state *to;
struct s_xfa_state *from;

} x fa_trans_t;

Thexfa_trans_t structure defines a transaction inside the FA graph. One transaction connects two
FA states, if one of the events described inside thexfa_trans_t (or the "empty" EPS event)
becomes true. Thetlink field is used to link thexfa_trans_t structure to the destination state,
whereas theflink field is used to link thexfa_trans_t to the origin state. Themapfield is a 256
bits wide bitmap that lists all the events that would trigger the transaction. For example, if the byte
0x10 is received while in the origin state, the bit 0x10 of themapbitmap is checked and if found
set, the transaction is executed. For EPS transactions (inside NFA graphs), themapfield can be
NULL. The flagsfield stores a bitmask of all the active flags for the transaction. The following
flags are defined for theflagsfield:

XFATF_EPSTRANS This tells that the transaction is an "epmty" EPS transaction

The to field is a pointer (ofxfa_state_t type) to the destination state of the transaction, whereas
the from field is a pointer (ofxfa_state_t type) to the origin state of the transaction.

xfa_attr_t

typedef struct s_xfa_attr {
struct ll_list_head link;

GNU 0.18 2

XFA(3) FiniteAutomata Library XFA(3)

int type;
void (*free) (xfa_system_t *, void *);
void *adata;

} x fa_attr_t;

Thexfa_attr_t structure desribe a generic attribute data that can be associated with a given state.
The link field is used to link the attributexfa_attr_t structure to thealist field of thexfa_state_t
structure. Thetypefield is a number that identifies that attribute type. In normal situations, differ-
ent numbers will correspond to different types, whose data will be stored inside theadatafield of
thexfa_attr_t structure. Thefree(xsys,data) field is a pointer to an optional function that can be
used to perform complex cleanup of theadataallocations.

Functions
The following functions are defined:

xfa_trans_t *xfa_alloc_trans(xfa_system_t *sys, unsigned long const *map, unsigned long flags,
xfa_state_t * from, xfa_state_t *to);

Allocates a transaction structure. Thesysparameter is the system interface to be used by the
xfa_alloc_trans implementation. Themapparameter is a pointer to
XFA_TRANSMAP_ULONGS unsigned longs whose bits define the events that will trigger the
transaction. Ifbit N (from 0 to 255) is set inside themapbitmap, the byte with numeric value N
will trigger the transaction. Theflagsparameter specify the flags for the transaction. The follow-
ing flags are defined for theflagsparameter:

XFATF_EPSTRANS This tells that the transaction is an "epmty" EPS transaction. In this case the
mapparameter will be ignored.

The from parameter specify the starting state of the transaction, whereas theto parameter specify
the destination state of the transaction. Thexfa_alloc_trans function returns a pointer to the newly
allocated transaction, orNULL if an error occurred.

void xfa_free_trans(xfa_system_t *sys, xfa_trans_t *trn);

Frees the transaction pointed by thetrn parameter, using thesyssystem interface.

xfa_state_t *xfa_alloc_state(xfa_system_t *sys, int phsize);

Allocates a new state using the system interface passed in thesysparameter. The phsizeparameter
defines the initial size of theshhash used during the NFA to DFA conversion to accumulate all the
states reachable by EPS transactions. The constantXFA_DEF_PHASH_SIZE can be used as
default, since the hash is automatically resized in any case. Thexfa_alloc_state returns a pointer
to the newly allocated state, orNULL in case of error.

void xfa_free_state(xfa_system_t *sys, xfa_state_t *stt, int recurse);

Frees the state pointed by thestt parameter, using the system interface passed in thesysparameter.
Thexfa_free_state function also frees all the orphaned transactions that leaves/arrives the cur-
rently freed state. If therecurseparameter is specified, thexfa_free_state function will recurse
and free all the nodes that are reachable fromstt (recursively).

GNU 0.18 3

XFA(3) FiniteAutomata Library XFA(3)

void xfa_free_attr(xfa_system_t *sys, xfa_attr_t *attr);

Frees the attribute pointed byattr using the system interface passed in thesysparameter.

int xfa_do_once(xfa_system_t *sys, xfa_state_t *stt, int (*dproc) (void *, xfa_system_t *, xfa_state_t
*), void *priv);

Recurse through all the states reachable from the statestt and call the functiondproconce per
state in the reachable graph. Thesysparameter is a pointer to the system interface, whereas the
priv parameter is an opaque pointer that is passed todprocduring the state enumeration (first
parameter). The second parameter passed todproc is the system interface pointer, and the third
one is a pointer to the currently reached state. Thexfa_do_once function returns 0 if succeeded, or
-1 if an error occurred.

xfa_state_t *xfa_nfa2dfa(xfa_system_t *sys, xfa_state_t *stt);

Create a DFA graph from the NFA graph whose starting state is passed in thestt parameter. The
sysparameter is a pointer to the system interface. Thexfa_nfa2dfa functionre turns a pointer to
the starting state of the resulting DFA graph, orNULL in case of error.

int xfa_label_states(xfa_system_t *sys, xfa_state_t *stt, unsigned long *label);

Thexfa_label_states function assign a unique label to each state of the graph whose starting state
is passed in thestt parameter. The label parameter is a pointer to an unsigned long that will be
updated for every assigned label. The starting value of *label will be the first assigned. Thesys
parameter is the system interface pointer. The function return 0 if succeded, or -1 in case of error.

int xfa_dfa_minimize(xfa_system_t *sys, xfa_state_t *stt);

Thexfa_dfa_minimize function minimizes the DFA graph whose starting state is passed in thestt
parameter. Thesysparameter is the system interface pointer. The function returns 0 in case of suc-
cess, or -1 if an error occurred.

int xfa_re2nfa(xfa_system_t *sys, xfa_state_t **csts, xfa_state_t **cste, unsigned char const **ptr);

Creates an NFA graph from a regular expression. the system interface is passed in thesysparame-
ter. The resulting graph starting state is returned incstswhile the resulting graph ending state is
returned incste. The regular expression is passed in theptr parameter (the string pointed by *ptr)
that, at the end, will be set to point to the next character after the end of the regular expression. A
full regular expression syntax is supported by thexfa_re2nfa implementation. The function
returns 0 in case of success, or -1 in case of error.

LICENSE
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. Acopy of the license is available at :

http://www.gnu.org/copyleft/lesser.html

GNU 0.18 4

XFA(3) FiniteAutomata Library XFA(3)

AUTHOR
Developed by Davide Libenzi <davidel@xmailserver.org>

AV AILABILITY
The latest version ofXFA can be found at :

http://www.xmailserver.org/xfa-lib.html

BUGS
There are no known bugs. Bugreports and comments to Davide Libenzi <davidel@xmailserver.org>

GNU 0.18 5

